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ABSTRACT ARTICLE HISTORY
The Cry toxins are a family of crystal-forming proteins Received 29 August 2016
produced by the bacterium Bacillus thuringiensis. Their mode Accepted 23 June 2017
of action is thought to be to create pores that disrupt the KEYWORDS

gut epithelial membranes of juvenile insects. These pores Cry toxin; risk assessment;
allow pathogen entry into the hemocoel, thereby killing the GM; Bacillus thuringiensis;
insect. Genes encoding a spectrum of Cry toxins, including insecticide; crops

Cry mutants, Cry chimaeras and other Cry derivatives, are

used commercially to enhance insect resistance in genetically

modified (GM) crops. In most countries of the world, such

GM crops are regulated and must be assessed for human

and environmental safety. However, such risk assessments

often do not test the GM crop or its tissues directly. Instead,

assessments rely primarily on historical information from

naturally occurring Cry proteins and on data collected on Cry

proteins (called‘surrogates’) purified from laboratory strains of

bacteria engineered to express Cry protein. However, neither

surrogates nor naturally occurring Cry proteins are identical to

the proteins to which humans or other nontarget organisms

are exposed by the production and consumption of GM

plants. To-date there has been no systematic survey of these

differences. This review fills this knowledge gap with respect

to the most commonly grown GM Cry-containing crops

approved for international use. Having described the specific

differences between natural, surrogate and GM Cry proteins

this review assesses these differences for their potential to

undermine the reliability of risk assessments. Lastly, we make

specific recommendations for improving risk assessments.

Introduction

Bacillus thuringiensis (Berliner) is a bacterium found in diverse ecological niches
and may be ubiquitous in distribution (de Maagd, Bravo, & Crickmore, 2001).
It produces a varied array of entomopathogenic compounds effective against a
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broad range of arthropods. These include crystal proteins (Cry), cytolitic proteins
(Cyt), vegetative insecticidal proteins (Vip), secreted insecticidal protein (Sip) and
exotoxins — each with different characteristics, specificities and modes of action
(de Maagd, Bravo, Berry, Crickmore, & Schnepf, 2003; Qkstad & Kolsto, 2012;
Schnepf et al., 1998).

Since its discovery over a hundred years ago, research into B. thuringiensis
has been motivated primarily by its potential for pest control (Hilbeck & Otto,
2015; Okstad & Kolste, 2012; Sanchis, 2010). Until the 1950s, B. thuringiensis
was considered taxonomically to be a variety of Bacillus cereus, as was Bacillus
anthracis (Oh, Ham, & Cox, 2012; Okstad & Kolstg, 2012). Based on their genetic
analyses, Helgason et al. (2000) still postulated that all three ‘should be considered
as belonging to one and the same species’ since the principal difference between
B. cereus, B. anthracis and B. thuringiensis is only that the latter produces plasmids
encoding crystalline endotoxins. B. thuringiensis is considered primarily a gut
pathogen of arthropods, nematodes and protozoa (de Maagd et al., 2001; Durmaz,
Hu, Aroian, & Klaenhammer, 2016; Wei et al., 2003). However, it can also be a
human gut pathogen (McIntyre, Bernard, Beniac, Isaac-Renton, & Naseby, 2008;
Oh et al., 2012; Ramarao & Sanchis, 2013; Wilcks et al., 2008). B. cereus is a well-
known pathogen of mammals, including humans (Ramarao & Sanchis, 2013).

The life cycle of B. thuringiensis consists of vegetative and stationary phases
(Lambert & Peferoen, 1992). Cells grow in vegetative mode so long as nutrients
are available but form endospores within sporangia under unfavourable condi-
tions. Coinciding with sporulation, large inclusion bodies develop that consist of
one or more proteins of the crystalline (ie Cry type), or the cytotoxic (Cyt) type
(Crickmore et al., 1998; de Maagd et al., 2003). In this review, we focus only on
the entomopathogenic Cry (crystal) toxins of B. thuringiensis.

The presumptive, but still disputed, biological role of these Cry proteins is
to facilitate invasion by B. thuringiensis of live host gut tissues (de Maagd et al.,
2003; Guillem & Porcar, 2012). A summary of the standard understanding of their
mode of action is that the crystal, which is biologically inactive, is progressively
disaggregated, solubilised and enzymatically processed, via an inactive but soluble
protoxin, into a much-truncated protein capable of binding to insect midgut epi-
thelial receptors. Receptor binding greatly facilitates the creation of pores in the
midgut membrane whose result is epithelial lysis and death of the host (Adang,
Crickmore, & Jurat-Fuentes, 2014; Vachon, Laprade, & Schwartz, 2012). However,
receptor binding is probably not a fundamental requirement for pore formation,
at least by Cryl, Cry2, Cry3 or Cry5 proteins since pore formation occurs with
synthetic membranes in vitro (Kao et al., 2011; Peyronnet et al., 2002; Schwartz
et al., 1997; Slatin, Abrams, & English, 1990).

Crickmore has developed a nomenclature for Cry proteins based on amino acid
sequence similarities, (Crickmore et al., 1998). So far, 74 Cry classes have been
listed in that online database (Crickmore et al., 1998). Within this system, each
Cry class is generally considered specific against one (or a few) insect taxonomic



Downloaded by [74.79.12.192] at 05:35 28 September 2017

64 J.R.LATHAM ET AL.

orders. Thus, members of the Cry1 class (such as CrylAb) are considered active
primarily against larval stages of the order Lepidoptera and toxins of the Cry3
class against larvae of Coleopteran species (Crickmore et al., 1998; de Maagd
et al., 2003).

Historically, crystal and spore preparations of distinct strains of B. thuringiensis
have seen use as biocontrol agents in forestry, in agriculture, and in public health appli-
cations against vectors of human diseases, such as mosquitoes (van Frankenhuyzen,
2013). Even in the industrial agriculture systems of North America, B. thuringien-
sis-based insecticides were widely used between the 1980s until the mid 1990s. At that
time, heavy reliance on synthetic pesticides had led to pest resistance outpacing the
development of new pesticides and so public and private research into Cry proteins
experienced an unprecedented surge (Sanchis, 2010).

Subsequently, their use in agriculture was largely supplanted by: (1) the intro-
duction of neonicotinoids (now suspended in the EU) (Kollmeyer et al., 1999)
and (2) genetic engineering of crop plants which express Cry proteins within the
plant. This GM approach overcomes some of the limitations to the efficacy of
natural B. thuringiensis-based insecticides, which include their rapid inactivation
due to UV light and rain (Behle, McGuire, & Shasha, 1997).

Most commercial Cry toxin-expressing genetically modified (GM) crops, here-
after called Bt crops, are varieties of maize and cotton. Widely used Bt crops are
YieldGard maize which is based on insertion event MON810 (Cryl); Syngenta’s
Bt11 maize (Cryl), marketed as Agrisure; and Bollgard II cotton whose insertion
event (MON15985) contains a cryl and a cry2 toxin gene. More recently, Bt soy-
beans have been commercialised in Latin America (Monsanto’s MON87701 and
Dow’s DAS-81419-2), while Bt eggplants (aubergines) are undergoing field-testing
in Bangladesh.

Most commercial Bt crops utilise proteins of the Cryl, Cry2 or Cry3 classes.
In them, B. thuringiensis-derived sequences coding for Cry proteins are flanked
by promoter and terminator sequences, usually from micro-organisms or viruses.
Each transgene insertion (which typically has more than one cry gene) is termed
an ‘event. Each insertion event is normally the subject of an individual regula-
tory application. This varies, however, depending on the country and nature of
the transgene. In the USA, USDA calls these ‘Petitions for deregulation, while
Cry proteins are regulated by EPA as plant-incorporated protectants (PIPs) and
successful application results in ‘registration.

So far, in commercial agriculture, up to six Cry proteins have been combined in
a single cultivar, with Cry toxins directed against both lepidopteran and coleop-
teran pests (Hilbeck & Otto, 2015). In large part, this introduction of multiple
Cry proteins in a single cultivar is recent and reflects the need to maintain resist-
ance against pests that are continuously evolving (Carriere, Fabrick, & Tabashnik,
2016). A second approach to circumvent pest resistance has been to create hybrid
Cry proteins. An example is Dow’s MXB-13 cotton, which contains elements
from three distinct Cryl proteins (Dow Agrosciences, 2003a; Table 1). Different
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Cry protein domains affect different pests. Therefore, hybrid Cry proteins can
combine different domains into a single event, to combat or delay pest resistance
and facilitate breeding.

Trends of wider commercialisation and transgene stacking are leading to
increasing exposure to Cry toxins which may be produced in green tissues, roots,
seeds and pollen. In these tissues, concentrations vary widely, ranging from below
the detection limit to 15 ug/g fresh weight (Nguyen & Jehle, 2007; Székacs, Lauber,
Juracsek, & Darvas, 2010).

The'history of safe use’ as incorporated into Cry toxin regulatory safety

The crystalline insecticides purified from B. thuringiensis have the common repu-
tation of being fairly safe for the environment due to their limited range of species
toxicity (Behle et al., 1997; van Frankenhuyzen, 2013). Following this reputation,
regulators and applicants often state, or imply, that standard Cry toxin prepa-
rations (hereafter ‘wild-type Cry proteins’) have ‘a history of safe use’ which is
presumed to carry over to GM Bt crops. Thus, FDA’s Biotechnology Consultation
Note on MONS810, dated September 1996, reads:
Monsanto states that the cryIA(b) protein present in MON809 and MONS810 is iden-

tical to that present in nature and commercial microbial preparations approved by the
Environmental Protection Agency (EPA). (FDA, 1996)

And the company itself wrote:

Using modern biotechnology, Monsanto has developed insect-protected YieldGard
corn, event MON 810, that produces the naturally occurring Bacillus thuringiensis (Bt)
protein, CrylAb. (Monsanto, 2002)

The same assumption has been used by regulators and in public communications.
In 2011, the Australia/New Zealand GM regulator (FSANZ) equated GM plant
and wild-type Cry proteins in a press release:

[It is] an insecticidal protein CrylAb that is produced by the naturally occurring soil
bacterium Bacillus thuringiensis sub sp. kurstaki (Btk). The gene encoding this protein
has been used to genetically modify some crops so that they contain the protein and
are thus protected against certain insect pests. The protein is also extensively used in
organic and conventional farming as a direct application pesticide. (FSANZ, 2011)

Even more explicit are the opening statements of Dow AgroSciences, 2012 appli-
cation to USDA DAS-81419-2 soybean (now approved):
CrylAc and CrylF have a long history of safe use. The proteins originate from the
naturally occurring soil bacterium B. thuringiensis. The safety of the proteins has been
demonstrated in sprayable Bt formulations for pest control in agriculture for over half
a century ... (Dow AgroSciences, 2012)
Similar statements cover other Cry classes such as Cry3 (eg Monsanto, 2004) and
Cry34Abl1 and Cry35Ab1 (Dow Agrosciences, 2004).
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Such statements carry the strong implication that data collected on Cry toxins
produced in and purified from B. thuringiensis are applicable to GM crop risk
assessment.

Though much relied upon, this ‘history of safe use’ is not well defined or elab-
orated by its users in the regulatory system. It will be seen that it consists of both
a claim and an assumption. The safe use claim applies to nontarget organisms and
human health, and the assumption is that extrapolations can be made from it. The
specific claim is not questioned in this review. However, there are reports of human
toxicity, allergies and apparent sensitisation to wild-type Cry proteins (Bernstein
et al., 1999; Finamore et al., 2008; Mezzomo et al., 2013; Moreno-Fierros, Garcia,
Gutiérrez, Lopez-Revilla, & Vazquez-Padron, 2000; Torres-Martinez et al., 2016).
It is the appropriateness of that extrapolation, however, that is the subject of this
review.

This assumption has been previously questioned by numerous authors who
have noted that extrapolating from wild-type B. thuringiensis Cry toxins to toxins
produced in a GM plant contradicts the standard theory of Cry toxin activation
(eg Goldburg & Tjaden, 1990; Hilbeck, Moar, Pusztai Carey, Filippini, & Bigler,
1998b; Hilbeck & Otto, 2015; Hilbeck & Schmidt, 2006; Székacs et al., 2010; Toll,
1988). Prevailing understanding predicts that Cry proteins expressed in Bt crops
may have a broader host range and enhanced toxicity than wild-type proteins for
two reasons. One reason is that wild-type Cry proteins are tightly bound within
crystalline inclusion bodies and are in that form inactive, whereas all GM plant
Cry toxins exist in soluble forms. Secondly, wild-type Cry proteins require multi-
ple additional proteolytic steps to convert them into the activated toxin. However,
many GM transgenic events (Btl11, Bt-176, TC1507, DBT418 and T304) express
potential activated forms. In such plants, no activation steps may be required.
Since both solubilisation and proteolysis are activation steps that require highly
specific conditions (eg of high pH and specific proteases) that are not met by many
potentially affected organisms, GM plant Cry proteins may have broader host
ranges or greater toxicity. As Toll (1988) expressed it in reference to solubilisation:
‘[Bt crops] bypass a chemical containment mechanism that limits exposure to a
narrow range of species.

Wild-type Cry protein crystals vary in shape between bipyramidal, cuboidal
and rhomboidal forms (Bietlot et al., 1989; de Maagd et al., 2003). Their detailed
physical structures have been relatively little studied, but the crystals are known
to be complex (Ai, Li, Feng, Li, & Guo, 2013; Clairmont, Milne, Pham, Carriére,
& Kaplan, 1998; Schernthaner, Milne, & Kaplan, 2002). As proposed by Clairmont
and colleagues, the basic form of naturally occurring crystals is somewhat virus-
like in that multiple Cry proteins are attached via their amino termini to a sin-
gle molecule of DNA that is approximately 20 Kbp in length. The exact nature
of this DNA may vary. Xia et al. (2005) reported that the DNA component of
the crystal contained ‘the promoter, the coding region, and the terminator of a
CrylAc gene, although both Bietlot et al. (1993) and Sun, Wei, Ding, Xia, and
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Yuan (2007) reported a heterologous nature for the DNA. Others have reported
that the DNA-protein complex contained ‘plasmids harboured by the host strain’
(Chaturvedi, Bhakuni, & Tuli, 2000). The DNA-crystal complex itself, at least
for Cryl, is approximately 2 x 10° Da in size (Bietlot et al., 1993). The full-sized
crystal, however, must be an aggregate of these DNA-protein complexes and is
held together by disulphide bonds (Clairmont et al., 1998).

This structure is somewhat speculative, but regardless of the details, any stable
complex structure implies the existence of a complex activation process that is
highly dependent on the physicochemical structure of the crystals and not just
on the Cry protein amino acid sequence (Clairmont et al., 1998).

Given these differences between wild-type and GM Cry proteins, a key ques-
tion is to determine the number of potential containment steps for wild-type Cry
proteins of each class.

According to Clairmont, the first activation step is release of the crystal from
the bacterial sporophyte as a result of either physical destruction or germination
(Clairmont et al., 1998). The second step is for an individual crystal to disaggre-
gate. Disaggregation (in the case of Cryl proteins) requires a high pH to cleave
disulphide bridges between amino acids. The resulting complex is the 2 x 10° Da
unit of 10-20 Cry protein molecules that are organised along the strands of DNA
(Bietlot et al., 1993). In the next step, intestinal enzymes (trypsin, chymotrypsin,
pepsin and other gut proteases) trim the carboxy terminus of the Cry proteins
(Carroll et al., 1997). Also probably required for this step are DNAses to inter-
nally cut the DNA scaffold. Thus, the alternating action of DNAses and proteases
releases individual Cry molecules that nevertheless still have a short length of
DNA attached to them (Bietlot et al., 1993; Clairmont et al., 1998). This structure
is further processed at each end to yield the final activated toxin of around 65 kDa
(for Cryl) (de Maagd et al., 2003; Vachon et al., 2012).

Focus on the structure and disassembly steps of Cry crystals emphasises that
the toxicological differences between solubilised shortened GM plant Cry proteins
and wild-type Cry crystals are potentially profound. The complex higher order
structure, after all, explains why crystals are inactive, and why they can remain
dormant without degrading and why each wild-type Cry toxin is activated only
under the highly specific chemical conditions of the gut of susceptible organisms.
Even more than Toll (1988) can have known, each disassembly stage is a potential
containment step. This is an understanding that reinforces the 1990 recommen-
dation that ‘Activated delta endotoxin as expressed by B.t.k. plants nevertheless
should be tested as a new agent’ rather than be assumed to have the toxicity of
the wild-type crystal (Goldburg & Tjaden, 1990).

The role of surrogate proteins in Cry toxin risk assessment

Surrogate Cry proteins are those purified from GM bacterial strains such as
Escherichia coli or Pseudomonas fluorescens. They are typically proteins intended
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to be identical in sequence and length to those expressed in GM plants (Bialy,
1987). (The exceptions are MON 810, Dow’s CrylF from MXB-13 cotton and
the Cry3Bb1 in Monsanto’s MON863-see later). The purpose of surrogates is to
obviate the need in risk assessment assays for whole Bt crop tissues or purified
Cry proteins isolated from plants, since purifying Cry proteins from plants can
be difficult due to their sometimes low abundance (Freese & Schubert, 2004).
Surrogate proteins are the test material most commonly used to assess Cry protein
biodegradation, Cry protein digestion by mammals and acute toxicity towards
mammals and other nontarget organisms. By far the majority of studies contrib-
uting to risk assessment thus rely on surrogates (Freese & Schubert, 2004).

The willingness of regulators to accept submissions reliant on surrogate Cry
proteins has been repeatedly critiqued for assuming the identity of plant and bac-
terial Cry proteins. In 2000, the US National Academies of Science wrote: “Tests
should preferably be conducted with the protein as produced in the plant’ (NAS,
2000). Freese and Schubert (2004) called the use of surrogate proteins a ‘serious
mistake’ An external scientific panel convened by EPA (SAP MT, 2000) also criti-
cised the use of surrogate proteins, as has an EU advisory committee and officials
from various European environment agencies (Dolezel et al., 2011; EC, 2000).

Despite these criticisms, the acceptance of surrogates and of historical data from
wild-type Cry crystals continues at the EPA and in Europe’s EFSA. To give one
example, in its 2014 Biopesticides Registration Document for the DAS-81419-2
soybean, EPA accepted a Cry protein purified from P, fluorescens in toxicity studies
with the honeybee (Apis mellifera), a parasitic hymenoptera (Nasonia vitripennis),
the green lacewing (Chrysoperla rufilabris), other insects, earthworms, a fish and
a bird (EPA, 2014). Similarly, when oral toxicity testing of mice with the surro-
gate had shown no effect, testing DAS-81419-2 soybean for toxicity towards wild
mammals was deemed unnecessary.

In the same application, EPA also accepted surrogate Cry proteins (rather than
soybean leaves) for a study concluding that CrylAc and CrylF proteins degrade
rapidly in soils. EPA also accepted a study simulating mammalian gastric digestion
of surrogate Cry protein. The subsequent conclusion of rapid disappearance of
surrogate Cry proteins in soils and mammalian guts later became the justification
for bypassing various tests on ecosystem toxicity, as well as for EPAs conclusion
that humans would not be exposed to Cry proteins originating from the use of
DAS-81419-2 beans.

Thus, except for one field experiment with soybean leaves, EPA, USDA, FSANZ
and EFSA were entirely reliant on historical data or on surrogate Cry proteins for
their approval of DAS-81419-2 soybeans expressing CrylAc and CrylE

In summary, the concept of a ‘history of safe use’ and the adoption of surrogate
Cry proteins incorporate similar but questionable assumptions; namely that, in
comparison to the GM Cry protein present in the Bt crop, surrogate Cry proteins
(or the wild-type Cry proteins) are unaltered with respect to diverse parameters
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associated with potential harm: toxicity, specificity, allergenicity, bioavailability
and persistence.

To examine the use of these assumptions more thoroughly than has so far been
attempted, is the purpose of this review. Since, to a significant extent, this is also
the purpose of risk assessments for commercial Bt crops, much of the data in this
review derives from such risk assessments.

For useful critiques of other aspects of nontarget risk assessment as applied
to Bt crop plants, we refer the reader to Andow and Hilbeck (2004), Freese and
Schubert (2004), Hilbeck and Schmidt (2006), Lovei, Andow, and Arpaia (2009),
Dolezel et al. (2011) and Hilbeck, Meier, and Trtikova (2012).

Scope, methods, reference materials and selection parameters of this
review

The starting point for this analysis was to catalogue the evidence of intentional or
accidental molecular and structural changes to the Cry proteins associated with
the engineering process in commercialised Bt maize, cotton and soybean crops.
Thus, we were interested in any alterations or changes that potentially could affect
risk parameters of Cry proteins and, therefore, invalidate assumptions of identity
or equivalence between a GM plant Cry protein and a surrogate Cry protein or
between a GM plant Cry protein and wild-type Bt crystals. Changes considered,
therefore, included DNA sequence changes, amino acid substitutions, amino acid
sequence additions (eg chloroplast transit peptides), other protein size changes
(due to any cause) and other covalent modifications uncovered during testing
(such as glycosylation).

The initial basis for our choice of GM Bt crops were the regulatory summary
documents produced by FSANZ (formerly ANZFA), which is the regulatory
authority responsible for GM food safety in Australia and New Zealand. A key
reason for this choice was that Bt crops approved by FSANZ are the most likely
to be mixing in global trade. Where already available to us, the full GM company
dossiers submitted to FSANZ were also used (Monsanto’s MON810, MONS863
and MON89034, Syngenta’s Cot67B and 5307 and Dow’s TC1507).

On finding that the FSANZ summary documents did not sufficiently nor
always accurately reflect the data in GM company applications, additional use
was made of documents submitted to the Animal and Plant Health Inspection
Service APHIS (part of USDA) and the US EPA, as well as commercial patents
and the peer-reviewed scientific literature. The cut-oft date for consideration was
FSANZ approvals prior to 1 July 2015. This selection process also covers all GM
Bt crops submitted to the EFSA. From our extensive past experience in evaluating
dossiers submitted to EFSA and the US regulators, we know that the submitted
dossiers to all these regulators are essentially scientifically identical, regardless
of the differences in regulatory procedures - the US deregulating/exempting or
registering — and the EU approving, GMOs (Dolezel et al., 2011).
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Table 1 is intended to summarise the regulatory characterisation of each GM
plant Cry protein. Table 1 also documents the specific origins of the Cry proteins
used in these Bt crops. It additionally contains information on protein detec-
tion, size fractionation on polyacrylamide gels and amino acid sequence analy-
sis. It contains the full list of event approvals considered in this study. All were
major commodity crops, ie maize (corn), soybeans and cotton. Where one event
expresses multiple Cry proteins, each protein is accorded a single line of Table 1.

Table 1 presents the data as assessed by the applicant and, less commonly, by
the regulator. However, claims by applicants were frequently unsupported, or
contradicted by, the data in the application. In the case of MONB810, they were
contradicted by subsequent peer-reviewed publications as well. Where an alter-
native interpretation was thought warranted, it is presented in column G, which
represents our interpretation of the ‘in planta’ protein data. In spite of this potential
for alternative interpretations, the written text (outside of Table 1) always reflects
the conclusions drawn by the applicant, unless clearly indicated.

The second aspect of the study was to review this information in the light of
a comprehensive understanding of the structures and mechanisms of action of
Cry proteins.

This review is not a full critique of Cry toxin risk assessment. Assessments
incorporate other data, such as bioinformatic evidence and compositional analysis,
as part of their evidence gathering and which is not considered here.

How Cry proteins in plants differ from wild type
DNA base alterations

DNA from bacterial species typically does not support efficient protein production
in plant cells due to codon usage differences (Murray, Lotzer, & Eberle, 1989). Before
being inserted into plants, cry gene sequences are therefore extensively mutated
(de Maagd et al., 2003; Perlak, Fuchs, Dean, McPherson, & Fischhoff, 1991). These
mutations are intended to allow high Cry abundance and thereby to increase toxin
efficacy and delay insect resistance. Typical is the crylAb transgene introduced into
MONB810 maize (Monsanto, 1995). It is 2448 DNA base pairs (bp) in length, of
which 709 bp differ from the original B. thuringiensis wild-type sequence (Fischhoff
et al., 1987; Hernandez et al., 2003; Monsanto, 2000). None of the 23 distinct cry
transgene containing events approved by FSANZ (see Table 1) thus possesses the
DNA sequence of the wild-type source.

Such DNA changes (with the exception of chimaeric and hybrid proteins)
typically aim to leave amino acid composition unaltered. An exception is the
Q349R substitution in MON863 that was introduced to facilitate DNA manipu-
lation (Monsanto, 2001). Nevertheless, such DNA codon usage substitutions may
be of relevance to risk assessment since optimising DNA for eukaryotes affects
the potential for horizontal gene transfer. This possibility is not a focus of this
review, however.
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Amino acid substitutions in Cry proteins

Many cry transgenes encode amino acid composition substitutions compared to
wild type. Some are unintended. The Monsanto CrylAc events MON531 (cotton),
MONB87701 (soy) and MON89034 (maize) all contain an L to S amino acid sub-
stitution at position 765 or 766. They are all derived from one mutation described
by Monsanto as ‘unintentional’ (see Table 1) (Monsanto, 1994).

In recent years, there has been a trend towards intentional substitutions. An
example is MON863. To create MON863 maize the wild-type (cry3Bbl) gene
was engineered to produce what the Monsanto patent calls a ‘second-generation
molecule ... with increased activity’ (English et al., 2000). Five amino acids were
substituted (D165G, H231R, S311L, N313T and E317K) to create a protein that
Monsanto called Cry3Bb1.11098. As a consequence of the Q349R substitution
mentioned above and also the insertion of an extra alanine residue at position 2,
the intended protein differs by seven amino acids from the wild-type (Monsanto,
2001).

In the same class of enhanced Cry proteins is the Cry3Bbl of MON88017 which
differs from Cry3Bb1.11098 only in lacking the D165G substitution (Monsanto,
2006).

Although not featured in Table 1, the Cry9C protein in Starlink maize (pro-
duced by Aventis) was modified to enhance its resistance to degradative enzymes
and, therefore, to increase its stability in plant cells (Bucchini & Goldman, 2002).
Similarly, Syngenta’s 5307 maize contains a Cry3A variant (called eCry3.1Ab) for
which amino acids were substituted to create a cathepsin G protease recognition
site. The altered amino acids are V155A, S156A and S157P (Syngenta, 2011).

Major amino acid changes and chimaeric proteins

A very common deliberate alteration among GM plant Cry proteins is truncation.
Syngenta’s Bt11 maize contains a CrylAb10 reduced from a wild-type length of
1156 amino acids (aa) down to 615aa. In Syngenta’s Bt-176 corn the CrylAb is
cut from 1155aa to 648aa; Dow’s TC1507 corn contains CrylFa2 cut from 1174aa
to 605aa); Bayer’s T304-40 cotton, containing CrylAb5 is reduced from 1155aa
to 617aa (Bayer Crop Science, 2008; Ciba-Geigy, 1994; Dow Agrosciences, 2000;
Northrup King, 1995). All are Cry1 class proteins and in each case large sections of
the carboxy terminal end of the protein were purposefully removed, for a variety
of reasons (See also Table 1).

A further significant number of Bt crops contain cry transgenes that encode
chimaeric proteins (Table 1). Among them is Syngentas COT67B cotton.
(Syngenta, 2007). The COT67B Cry, designated as ‘FLCrylAb; is a hybrid of
CrylAb3 and 26aas of CrylAa. This addition Syngenta considers to be a ‘repair’
of CrylAb. Another chimaera is Monsanto’s MON89034 maize (Monsanto, 2006).
MON89034 encodes a protein designated as ‘CrylA.105’ It is a fusion of three
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partial proteins, CrylAb10, CrylAcl and CrylFal. Another protein chimaera is
Dow’s DAS-81419-2. This soybean contains two separate transgenes both of which
are chimaeric. One of these, designated CrylAc or ‘crylAc(synpro)’ encodes a
fusion protein synthesised from parts of CrylAcl, CrylCa3 and CrylAbl (Dow
AgroSciences, 2012). The second transgene, though called CrylF (or sometimes
CrylFv3), is a chimaera of CrylFa2, CrylCa3 and CrylAbl. Bayer’s GHB119
cotton encodes a Cry2Ael protein fused to a chloroplast transit peptide (CTP)
from Arabidopsis thaliana (Bayer Crop Science, 2008). Syngenta’s 5307 maize
event encodes a fusion of a modified Cry3Aa2, part of a CrylAb3 and a 22-amino
acid N-terminal synthetic amino acid sequence (Syngenta, 2011). The 22 amino
acid sequence is the accidental result of a PCR-induced mutation that created a
frame-shift (Syngenta, 2011).

In a somewhat separate class of major alterations is Monsanto’s MON810 maize.
The CrylAb gene used in the transformation had an open reading frame 3468 bp
in length (Table 1). However, Monsanto later informed US regulators and FSANZ
that MONS810 contains a less than full length CryIA(b) gene’ Independent analysis
showed that only 2448 bp had inserted into the plant genome (Hernandez et al.,
2003). The latter third of the transgene had been lost during the DNA transfor-
mation process (Wilson, Latham, & Steinbrecher, 2006). Investigating further,
various authors proposed that the truncated CrylAb protein extends by 2 or 18
amino acids as a consequence of the open reading frame extending into the maize
genome DNA flanking it (Hernandez et al., 2003; Rosati, Bogani, Santarlasci, &
Buiatti, 2008).

Unintended Cry protein modifications in plants

In the course of typical Bt crop risk assessment, data are collected by applicants
on various properties of Cry proteins produced in plants (hereafter ‘GM plant Cry
proteins’). The regulatory presumption, sometimes stated explicitly, is that such
data will confirm that the GM plant Cry protein is identical either to surrogate
protein or to wild-type forms and this identity justifies, for example, not testing
the effects of the crop itself on nontarget organisms.

However, as Table 1 makes clear, it is the norm to observe differences that
imply plant-specific modification of Cry proteins. This is exemplified by Bayer’s
GHBI119 cotton (Bayer Crop Science, 2008). GHB119 cotton contains a single
cry transgene encoding Cry2Ae fused to a CTP sequence. When extracted from
leaf tissues, however, Cry2Ae-specific fragments were observed at five distinct
sizes with molecular weights of approximately 150, 65, 28, 19 and 17 kDa on SDS
polyacrylamide gels (see Table 1). Except for the fainter 28 and 19 kDa bands,
each of the bands is similarly prominent, suggesting cotton leaf tissues contain
approximately equal amounts. Other indistinct Cry2Ae-specific bands were also
present. Of the five polypeptides, only the 65 kDa band co-migrates with the sur-
rogate Cry2Ae protein (purified from E. coli). Seeds of GHB119 cotton, however,
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contain only three Cry2Ae-specific polypeptides (65, 19, 17 kDa) (Bayer Crop
Science, 2008). Thus, fragments that are larger or smaller than the surrogate are
commonly observed.

It is also common for Bt crops to produce (or at least contain) Cry-specific
polypeptides none of which co-migrate with the surrogate on polyacrylamide gels.
In extracts from Dow’s MXB-13 cotton, for example, Cry-specific polypeptides
were detected for both CrylAcl/Cryl1Ca3/CrylAbl (sometimes called by Dow
CrylAc) and CrylFa2/CrylCa3/CrylAb (sometimes called by Dow Cry1F) but
no Cry protein prepared from plant material co-migrated with either full-length
surrogate (Dow Agrosciences, 2003a, 2003b).

As with Bayer’s GHB119, numerous Cry events provide evidence for the exist-
ence in plants of Cry forms with higher than predicted weights. For example, pro-
tein extracts from MON89034 maize contained a form of Cryl1A.105 at 250 kDa
plus other polypeptides at between 56 and 130KDa, with some polyacrylamide
gel bands being indistinct or otherwise difficult to interpret (Monsanto, 2006).
Likewise, DAS-59122 maize Cry34Ab1 exhibits forms at 60, 50, and 42 kDa in addi-
tion to the expected 13.6 kDa protein (Dow Agrosciences, 2004). For MON87701
a ‘faint’ band was reported at 250 kDa (Monsanto, 2009). For MON863 maize
(Cry3Bbl), Monsanto reported a protein at 220 kDa that was detected by Cry-
specific antibodies, although the applicant did provide some evidence this was
not a Cry protein (Hileman et al., 2001).

In summary, not one of the events approved by FSANZ exhibited just a single
Cry-specific protein band co-migrating with the surrogate. The three potential
exceptions are MIR604 maize, DBT418 maize and MON15985 (Bollgard II cot-
ton), where the relevant data are not publicly available. For two additional events,
MONS810 and TC1507, the information provided was inadequate for any analysis.
Thus, five lines lacked the information to form a judgement.

Even when Cry proteins extracted from GM plants migrate as apparent single
bands on polyacrylamide gels, more than one protein form may still be present.
For example, in the application for MON863, Monsanto extracted from a gel
the protein band that migrated at the same weight as the surrogate (produced
in E. coli). Using N-Terminal sequence analysis they concluded that, unlike the
surrogate, the GM plant Cry protein (Cry3Bb1) had three distinct start sites — at
amino acids 19, 25 and 36 (Table 1; Monsanto, 2001).

Applicants typically propose that these unexpected protein forms are arte-
facts of the extraction process. Smaller forms are often designated as ‘degradation
products’ or ‘proteolytic fragments’ or ‘attributable to degradation, while higher
weight forms are often described as ‘protein dimers’ or ‘aggregates’ (eg Bayer
Crop Science, 2008; Monsanto, 2001; Syngenta, 2007). Alternatively, applicants
may refer to unexplained bands as ‘impurities, even when detected by their spe-
cific antibodies and not present in control lanes (DAS-59122; Dow, 2004). In the
single instance where a degradation hypothesis was tested, however, Ciba-Geigy
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concluded that degradation during extraction played no part in generating the
additional Cry forms observed (Ciba-Geigy, 1994).

Ciba-Geigy’s test implies the need for other explanations for Cry-related
polypeptides of unexpected sizes. These might include: (1) unexpected pre-
translational processes, such as mRNA splicing; (2) post-translational modifica-
tion of Cry proteins; and (3) complex or otherwise aberrant transgene insertion
events, which are well documented (Wilson et al., 2006). The example of Syngenta’s
MIR604 corn suggests how such possibilities might occur. The surrogate used
by Syngenta was found to have an alternative upstream translational start site,
allowing two protein forms of the mCry3a protein, both equally abundant, to be
produced in E. coli (EPA, 2010).

Ciba-Geigy’s test of its explanation also highlights a more general issue. The
procedures used to determine whether or not GM plant Cry proteins are chemi-
cally identical to their surrogates suffer from scientific defects that, at best, prevent
independent interpretation and verification. Size markers may be missing (eg
Monsanto, 2001 p46), positive and negative controls, especially untransformed
controls, are often lacking (eg Dow Agrosciences, 2004; Dow AgroSciences, 2012),
procedures and reagents may be incompletely described (all applications), images
may be indecipherable or have low resolution (eg Dow Agrosciences, 2000; Dow
AgroSciences, 2012; Monsanto, 2001), or key results claimed as confidential (eg
Monsanto, 2000; Syngenta, 2006). In consequence, on the basis of the experiments
presented, it is often not possible to independently confirm or refute assertions
of the applicants.

For example, extracts from gel bands are often further characterised by MALDI-
TOF and N-terminal sequencing. The results are typically used to claim that GM
plant Cry proteins are ‘similar’ or ‘equivalent’ or ‘substantially similar. However,
as occurred with Bt-11 maize, the plant-derived protein excised from the gel is
typically the one that migrated closest to the surrogate Cry protein (Northrup
King, 1995). Thus, in almost every case, Cry protein forms that were novel or
otherwise unexpected, and thus in explicit need of characterisation, were omitted
from further analysis. MON863 represents one of very few cases where N-terminal
sequencing was performed on unexpected size fragments. The applicant partially
sequenced two bands but still neglected the remainder of the Cry-specific plant
polypeptides (Table 1; Monsanto, 2001). Thus, both applicants and regulators
appear to have largely lost sight of the fact that establishing the absence of unex-
pected fragments in plants is the goal. Verification of expected molecules is not.

Further problems of interpretation and verification arise when methods used
to extract GM Cry proteins from plants are highly complex or involve the use of
antibodies. For example, the initial purification steps of Cry2Ae (in Bayer’s cot-
ton event GHB119) passed plant extracts over an affinity column incorporating
a monoclonal antibody raised against the Cry2Ae protein (Bayer Crop Science,
2008). Since monoclonal antibodies recognise just a single epitope, Cry forms
produced by the plant but lacking that epitope, eg because they are truncated,
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will be absent from all subsequent procedures. Monsanto’s use of a polyclonal
antibody raised against the N-terminal 58 amino acids (<9%) of Cry3Bbl to
isolate Cry3Bb1 from plant extracts will similarly miss Cry polypeptides lacking
that region (Monsanto, 2001). Monsantos use of an antibody raised against the
N-terminal 14 amino acids of Cryl1A.105 is the most selective of all (Monsanto,
2006).

An equal problem is the use of such selective antibodies at the detection
stage, which is usually a western blot procedure. Monoclonal or polyclonal
antibodies, especially those raised against a less than full length Cry protein,
will again be unable to detect a subset of Cry-derived fragments or forms. Since
a different antibody is usually used at the purification stage, the detection of any
partial length Cry forms in plants can in principle be made impossible simply
by a judicious choice of antibodies, especially if the second antibody is raised
against a different terminus. Since many antibody reagents are poorly described
it is not possible to know whether this scenario has occurred. In these and the
other cases of interpretive ambiguity noted in this review, applicants have the
opportunity to make more data available and this would resolve many of these
uncertainties.

Therefore, we conclude that, at the very least, all applicants are biasing their
analyses of plant tissue extracts to reduce the possibility of detection of partial
or otherwise aberrant Cry proteins and so obscuring from regulators the full
range of Cry protein forms in plants. A similar critique applies to applicants who
treat plant extracts with the protease trypsin. Trypsin treatment was applied to
Btl1, Bt-176 and MONB810 plant extracts. The rationale for trypsin treatment is
that insect guts contain trypsin proteases (eg Northrup King, 1995 Appendix H),
but this rationale seems weak, given the disadvantage that trypsinisation risks
degrading the unexpected Cry forms whose detection is purportedly the goal of
risk assessment.

Lastly, many petitions characterise plant Cry proteins using N-terminal pro-
tein sequencing. However, such protein sequencing of GM plant Cry proteins
is often found to be ‘blocked’ Such blocking is normally considered indicative
of post-translational protein modification, usually acetylation. Blocking was
observed for the proteins CrylAb5 of T304-40; CrylFa2 of TC1507; Cry2Ab2 of
MON89034; Cry3Bbl of MONB863; and eCry3.1Ab of 5307 maize. In two of the
cases (eCry3.1Ab and MON863), acetylation of the blocked amino acid residue
was definitively confirmed (Monsanto, 2001; Syngenta, 2011). One event tested
positive for glycosylation. This was Cry2Ael from GHB119, though the single
datum is open to interpretation (Figure 11; Bayer Crop Science, 2008).

We conclude, therefore, that FSANZ-approved Bt crops usually contain a mixed
complement of Cry toxins. No GM plant Cry protein was structurally or chem-
ically identical, either to its wild-type precursor or to its bacterial surrogate. In
every case there was at least one verifiable difference, and usually many more.
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Are there biological implications of protein differences in GM plants?

As previous authors have pointed out, the logical weaknesses of risk assessment of
Bt crops relying on historical evidence and surrogates are twofold. On the one hand,
the transfer of a Cry protein into a crop - or its expression within that crop - may
result in structural and chemical differences that render the surrogate an unreliable
substitute for the plant protein (EC, 2000; Freese & Schubert, 2004; Goldburg &
Tjaden, 1990; NAS, 2000; SAP MT, 2000). Secondly, the history of safe use may be
invalidated by the differences between wild-type and plant proteins. For example,
B. thuringiensis Cry proteins are crystalline, whereas GM plant Cry proteins are
not. Furthermore, many commercial plant Cry proteins (see Table 1) are truncated
in such a way that the carboxy-terminal domain that inhibits toxicity is lost (eg
Dolezel et al., 2011; Hilbeck et al., 2012; Hilbeck & Otto, 2015; Toll, 1988). Both
solubilisation and truncation are expected to enhance toxicity.

The data described above and in Table 1 amplify and considerably extend
such critiques. First, by showing that, beginning from their crystal structure, the
activation process of wild-type proteins is more complex and more reliant on
specific conditions than risk assessments acknowledge, and second, by showing
that applicants are introducing proteins that are more radically changed than
commonly supposed.

These differences between GM plant Cry proteins and surrogates or wild-type
proteins serve to emphasise why direct comparisons of insecticidal activity of
GM plant Cry proteins and surrogates are particularly important, though only
in some risk assessments was this test performed. These tests show directly that
many surrogates differ toxicologically from the protein purified from the GM
plant. The CrylAb of Btl1 had identical activity when isolated from plants or
bacteria as did the Cry2Ab of MON89034 (Monsanto, 2006; Northrup King,
1995). However, the toxicity of CrylA.105 purified from MON89034 corn plants
was reported to be twice (EC,; of 0.0074 + 0.0017 ug protein/ml diet) that of its
surrogate purified from E. coli (EC,, of 0.012 + 0.0062 pg) (FSANZ, 2008; p35).
Previously, Ciba-Geigy had also reported that CrylAb protein isolated from
Bt-176 had a much higher toxicity than the surrogate. This result was consistent
in tests on European corn borer (Ostrinia nubilalis) (5-fold higher), cabbage looper
(Trichoplusia ni) (10-fold higher) and Corn earworm (Helicoverpa zea) (5-fold
higher) Ciba-Geigy, 1994). Syngenta reported a similar result with the CrylAb
of COT67B, with the plant protein having toxicity that was higher by fourfold
(an LC,, of 1.3 vs. 5.2 ng/cm?) (Syngenta, 2007). In every case where there was a
difference, the plant-derived Cry protein had greater activity. Notably, evidence
for differential activity of surrogates and GM plant Crys was limited to Cry1 class
toxins. Whether differential toxicity of surrogates is limited to the Cry1 class is
an important thesis that in future should be tested.

These results concur with other evidence, again primarily for Cry1 class pro-
teins. Wild-type Cryl proteins are considered by most authors as active only
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against Lepidoptera (van Frankenhuyzen, 2013). However, this can depend on
protein processing. When Cry1Bal crystals were dissolved and truncated in vitro
by trypsin digestion, ie to resemble more closely those made in plants, Bradley
and colleagues reported a marked increase in toxicity against coleopterans. Most
notable was a 50-fold increase in activity against the Colorado Potato Beetle
(Leptinotarsa decemlineata) (Bradley, Harkey, Kim, Biever, & Bauer, 1995). These
authors also showed that solubilised Cry3A was fourfold more active and Crylb
10-fold more active against the coleopteran Chrysomela scripta. The authors
inferred from these results that host specificity is broadened by the process of
activation. Solubilisation does not inevitably enhance toxicity, however. For Cry1B
toxicity towards Manduca Sexta the opposite was observed by the same authors
(Bradley et al., 1995).

In subsequent work, Hilbeck and colleagues (1998b; Hilbeck, Baumgartner,
Fried, & Bigler, 1998a and Hilbeck, Moar, Pusztai-Carey, Filippini, & Bigler, 1999)
reported that CrylAb from GM maize, also supposedly lepidopteran-specific,
was toxic towards a neuropteran, the larvae of green lacewing (Chrysoperla car-
nea), when administered via nontarget prey (Spodoptera littoralis) that had fed
on CrylAb GM maize plants. Toxicity was less, however, when the same prey
species had fed on artificial diet spiked with a surrogate Cry1 Ab toxin or when the
surrogate CrylAb toxin was administered directly (Hilbeck, 2002). While some
have argued that higher lacewing mortality might have resulted from suboptimal
prey quality — as a result of its exposure to the Cry toxin (Dutton, Klein, Romeis,
& Bigler, 2002), toxic effects were also observed when CrylAb toxin was admin-
istered directly to the lacewings and no prey species was involved (Hilbeck et al.,
1998b). Such an explanation also does not account for the differences in toxicity
observed between the different sources of the Cry protein (Hilbeck, 2002; Hilbeck
& Schmidt, 2006). These results thus show that toxicity of CrylAb is dependent
on factors other than its coding sequence and was the highest when produced in
a GM plant.

Furthermore, other researchers have also reported a significant toxicity of GM
plant-derived Cry1 proteins towards nonlepidopterans. For example, on coccinel-
lid (coleopteran) predators, both when administered directly (Dhillon & Sharma,
2009; Hilbeck et al., 2012; Schmidt, Braun, Whitehouse, & Hilbeck, 2009) or via
unaffected aphid prey (Moser, Harwood, & Obrycki, 2008; Zhang, Wan, Lovei,
Liu, & Guo, 2006). These results again contradict the expectation that Cry1l, when
produced in maize, will remain lepidopteran-specific.

Although there has been relatively little regulatory testing of GM Cry1 toxicity
outside the order lepidoptera, other research groups have nevertheless expanded
the list of insect orders sensitive to GM Cry1 proteins. This includes a significant
activity of GM maize debris (MON810, Cryl Ab) against caddisflies (trichopterans)
(Chambers et al., 2010; Rosi-Marshall et al., 2007); while others reported activity
of MONB810 (Cry 1Ab) against water fleas (Daphnia magna) (Behn, Primicerio,
Hessen, & Traavik, 2008; Bshn, Traavik, & Primicerio, 2010; Ferreira-Holderbaum
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etal., 2015) and of Bt-176 against the Colembolan Folsomia candida (Ciba-Geigy,
1994) (for an extensive review see Hilbeck & Otto, 2015).

Additionally, there are reports that, when produced in plants, Cryl proteins
can have substantially heightened toxicity towards species already known to be
susceptible to them. Thus, Lang and Vojtech (2006) observed that Syngenta’s
Bt-176 maize (no longer on the market) had extremely high activity (an LD, of
14 pollen grains) against European swallowtail caterpillars (Papilio machaon L.).
Similarly, in a comparison of the toxicity of CrylAb from MON810 maize with
that of a commercial formulation of CrylAb (DiPel) against strains of European
corn borers that were normally resistant to DiPel, the GM protein was more than
two hundred times more active (Li et al., 2007).

Evidence for altered, enhanced and broadened toxicity compared to wild-type
Cry proteins is therefore substantial but largely limited to Cryl class proteins.
Perhaps this is because Cry1 proteins are the most widely used and most studied
class in Bt crops.

The implications of these results are threefold: firstly, Cryl proteins differing
only in the organisms from which they were sourced may differ in toxicity, by more
than 100-fold. Second, this altered toxicity can manifest either as enhanced toxic
activity towards known targets or as novel toxicity towards other insect orders.
Thirdly, when compared side-by-side, GM plant Cry proteins have consistently
been the more toxic form. Hence, the data broadly agree with the predictions of
authors such as Toll (1988) and Dolezel et al. (2011) that progressive activation,
whether it occurs by solubilisation or truncation, such as occurs in Bt crops, can
broaden specificity and increase the activity of Cry toxins.

The proposition above is that Cry1 toxicity is widened in GM plants. It needs
a caveat, however. As documented by van Frankenhuyzen, some wild-type
Cryl toxins contradict the standard expectation of lepidopteran specificity (van
Frankenhuyzen, 2013). Other wild-type Cry toxin classes also sometimes show
activity towards multiple or unexpected species from diverse classes. Thus, it still
needs to be definitively shown that wild-type Cry proteins chosen for commer-
cialisation have the limited specificity claimed for them. Some, but not all, of the
apparently broadened specificity of GM plant Cry toxins might therefore be due
to inadequate testing of wild-type Cry proteins.

Questions surrounding the appropriateness of surrogate proteins are not lim-
ited to direct toxicological implications. Since Bt crops were widely commercial-
ised it has been reported that Cryl Ab embedded in GM plant material can persist
in soils for months (eg Zwahlen, Hilbeck, Gugerli, & Nentwig, 2003; Zwahlen,
Hilbeck, & Nentwig, 2007). Other authors have concluded that Cryl Ab remains
in aquatic systems for long periods (eg Douville, Gagné, Blaise, & André, 2007;
Douville, Gagné, Masson, McKay, & Blaise, 2005; Tank et al., 2010). CrylAb
proteins may also reach the human and foetal bloodstream and are also found in
the intestines of pigs (Aris & Leblanc, 2011; Chowdhury et al., 2003; Walsh et al.,
2011). By implying lengthy Cry protein survival in real environmental conditions,
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these results contradict the invariant conclusions of risk assessments — carried out
with surrogate Cry proteins — that concluded persistence of Cry toxins would be
measured in days or less, and that Cry protein survival in the gut was brief (eg
EPA, 2010). Other explanations for this discrepancy are possible, for example,
the standardised conditions used by applicants may be unrepresentative of the
environments they seek to mirror, but the use of surrogate proteins is another
potential source of what is an important inconsistency.

A separate reason to doubt toxicological equivalence between wild-type and
GM plant Cry proteins is provided by a Monsanto patent (English et al., 2000).
In its petition for the transgenic event MON863, Monsanto emphasised that its
Cry3Bb1.11098 toxin had 98.9% identity (seven amino acid differences) to the
Cry protein of the commercial insecticidal product Raven™. Monsanto stated also
that ‘MONS863 poses minimal risk to mammals, wildlife, and nontarget insects’
(Monsanto, 2001). EPA thus granted MON863 an ‘exemption from the require-
ment for a tolerance; agreeing that the Cry3Bb1.11098 in MON863, though altered,
‘do[es] not differ significantly’ from Cry3 proteins already exempted (EPA, 2001).

Monsanto’s patent on Cry3Bb1.11098, in contrast, claims to have made “super’
toxins” of which the Cry3Bb1.11098 in MON863 is the most potent (English et
al., 2000). This patent measured Cry3Bb1.11098 as being 7.9-fold (690%) more
active against corn rootworm species than wild-type Cry3Bb1. This enhancement
of toxicity was the basis of the patent’s novelty claim. According to the patent, the
proteins in it ‘have the combined advantages of increased insecticidal activity and
concomitant broad spectrum activity’ (italics added).

The claim of ‘concomitant broad spectrum activity’ is a plausible one. None
of the five amino acid substitutions deliberately made to Cry3Bb1.11098 were
introduced with specific pests in mind. One change was intended to reduce the
likelihood of nonproductive binding by Cry3Bb1 to random proteins in the insect
gut. A second enhanced channel activity and pore formation. In other words,
not only did the patent contradict statements the applicant had provided for risk
assessment, it also contradicts a ubiquitous proposition of Cry protein risk assess-
ment petitions: that amino acid similarity leads to similarity of toxicity. A second
commercial event, MON88017 (maize, see Table 1) also contains an enhanced
Cry3 “super” toxin’ covered by the same patent. For this protein too, the company
claimed a history of safe use and EPA again granted a regulatory exemption (EPA,
2001; Monsanto, 2004). The patent thus confirms a central proposition of this
review, that GM Cry proteins are not equivalent to, and are possibly substantively
more toxic than their wild-type ancestors.

Some recommendations

Our findings and conclusions have significance for the regulation of GM crops.
The first issue is that current procedures fail to address the use of Cry proteins
that have no precise ancestral form, ie those that are mutated or enhanced, are
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hybrid proteins or are in other ways synthetic. These are thus novel insecticides.
Their purpose is increased toxicity and the thwarting of insect resistance (Brevault
et al., 2013; English et al., 2000). But, whereas, they presumably possess either
increased toxicological activity or a new host range, petitions make only a rudi-
mentary attempt to acknowledge this novelty. For instance, in no case did we
find their changed biological properties precisely described and hardly ever was
a rationale for their novelty presented that might have been able to inform risk
assessment. Instead, applicants typically assigned names derived from one of the
component toxins and appeared to be assuming that toxicity followed from that
chosen designation.

Cry proteins in GM plants typically differ in size in comparison to surrogates
or wild-type proteins. These size/length differences have diverse origins, from
deliberate truncation, accidental truncation of the DNA construct (the case of
MONS810) or, most commonly of all, they are due to unknown activities associated
with Cry gene expression or post-translational modification in Bt crops. What is
the toxicological significance of these size differences? The most obvious answer
is that all full-length Cry proteins are nontoxic and require shortening to acquire
toxicity. Additionally, it is known that size differences can result in differential tox-
icity. In mosquito (diptera) midguts, Haider, Knowles, and Ellar (1986) observed
that Cryl was processed into a smaller form that is toxic primarily to dipterans,
whereas in the gut of lepidopterans the same protein was processed into a larger
fragment toxic only to lepidoptera (Haider et al., 1986). Similarly, proteolytic
cleavage of the CrylAc protein by their respective insect midgut proteases led to
differential toxicity against distinct pest species (Lightwood, Ellar, & Jarrett, 2000).
Cry3 and Cry?9 proteins also demonstrate fragment-specific toxicity (eg Brunet
etal., 2010; Guo, Zhang, Song, Zhang, & Huang, 2009; Rausell et al., 2004). Thus,
size differences of the kind observed in plants can influence toxicity.

The further reason for focusing on protein fragments and especially unex-
pected fragment sizes is the need for risk assessment to take into account that
transgenic events are selected from among hundreds or thousands for their high
activity against pest species. The selection process represents an a priori reason
to suppose that any novel or unexpected protein forms are the explanation of
this high activity.

For these reasons, regulators should require that surrogate Cry proteins be
identical to in size and chemical composition to GM plant Cry proteins before
accepting them as substitutes. Since it is known that Cry toxins often vary by size
within plants, according to organ and tissue type (see Table 1), diverse GM plant
tissues must be examined before it is accepted that GM plant Crys and surrogates
are identical in size.

A third significance of our analysis is that surrogate proteins are not the solution
to the difficulty of concentrating Cry proteins they appear to be. The first problem
is that, in order to be used, surrogates must be shown to be identical. Up to now,
identity has typically been left undefined by regulators. In consequence, applicants
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use their own terms (such as ‘equivalent’ or ‘substantially similar’) without defin-
ing them. In practice, despite clear evidence for differences between surrogates
and plant Cry proteins (including primary amino acid differences, additional
unexplained protein forms in plants, posttranslational modification and toxin
activity in assays), in every case, applicants proposed and regulators accepted,
that sufficient ‘identity’ or ‘equivalence’ was established. It seems that no observed
difference is sufficient to refute the hypothesis of identity, and lacking a definition,
likely never will be. Thus, even when an identical Dow construct (CrylFsynpro,
having a 130 kDa surrogate) was used to engineer two separate crop species —
and the resulting plant proteins were measured as 65 kDa in MXB-13 cotton but
as130 kDa in DAS-81419-2 soybean (see Table 1) - Dow nevertheless concluded
that both plant Cry proteins were equivalent in size to the surrogate.

In our view, surrogates should only be used if they are scientifically indistin-
guishable. Detection of any unexpected or nonidentical Cry-related protein in
plants should disqualify their use. Yet establishing identity between surrogates
and plant Cry proteins is scientifically problematic since it requires showing the
presence of the expected protein form(s), and the absence of unexpected forms,
whose identities are, of course, unknown in advance. This is the unacknowledged
challenge of using surrogates.

How this difficulty manifests in practice is that any biochemical assay reliant
on purified, fractionated or trypsinised samples risks losing unexpected Cry mol-
ecule(s) produced in plants in one of the discarded fractions. The use of antibod-
ies, either for purification or for detection, is also ruled out since these too make
significant but untestable prior assumptions about the nature of the unknown
Cry molecule(s). Without a purification step, however, how will low abundance
molecules be detected? The obvious solution might seem to be a total proteomic
analysis performed in the most unbiased way feasible (eg Agapito-Tenfen, Guerra,
Wikmark, & Nodari, 2013). Such a proteomic approach would have the added
advantage of potentially detecting any other unexpected protein molecules arising
as a result of plant transformation that would be missed by the use of surrogates.
But, while enormously more comprehensive than the risk assessment methodol-
ogies currently used, no proteomic analysis guarantees detecting the unexpected.
In the final analysis, the use of surrogate proteins is therefore not a logical solution
to the difficulty of purifying Cry proteins from plants or using plant materials.
Surrogates merely introduce novel difficulties of their own.

The above observations lead us to make the recommendation that, to be sci-
entifically defensible, the use of surrogates should be a last resort. At present,
surrogates are sometimes used arbitrarily and without specific justification. An
example is Syngenta’s estimate of environmental half-life in soil conducted for
MIR604 corn. Syngenta used a purified surrogate toxin when using leaf or other
plant tissues would have been both easier and more realistic (Syngenta, 2006).

From this example follows also the recommendation that justifications for the
use of surrogates should always be at the level of individual experiments. For
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example, it may be impossible to obtain sufficient Cry toxin from plants to dose
a mammal but still be possible to dose a small insect species. Every use of a sur-
rogate should specifically justify why whole tissues cannot be used. Whole tissue
tests should otherwise be mandatory.

It should thus be noted that the use of surrogates is in strong contradiction to
the prevailing science of Cry toxins. Ongoing research into the maturation pro-
cesses of Cry proteins and their variants implies that truncations and even small
changes can greatly alter activity and species specificity (Vachon et al., 2012).
Indeed, many of the outcomes of this research are patented as novel and effica-
cious innovations (eg English et al., 2000). We hope that regulators and applicants
involved in the risk assessment process for Cry proteins will work to bring their
work in line with the prevailing science and revisit past risk assessments to resolve
all such inconsistencies.

Our final recommendation, derived from all the above, and as originally sug-
gested by Goldburg and Tjaden (1990), is that a GM plant Cry ‘should be tested
as a new agent’ in terms of toxicity towards nontarget species. Historical data
serves at present to blur or mask potential hazardous effects. The regulatory
system should thus proceed from the assumption that, because GM plant Cry
proteins are solubilised compared with wild-type molecules (which are crystal-
line), and because many are extensively modified by the time they are transferred
into plants, and all are altered again inside those plants, they all constitute novel
molecules.

We make these recommendations because there are excellent potential rem-
edies for reliance on either surrogate Cry proteins or on data originating from
historic use of wild-type proteins. One such example is a standard Caco-2 cell
permeability assay. Caco-2 cells are human gut epithelial cells that are used to
predict absorption, and inhibition of absorption by small molecules as part of
drug discovery (van Breemen & Li, 2005). This assay could easily be adapted to
predict Cry protein toxicity and estimate Cry interactions with human intes-
tines. Moreover, such assays would require only small quantities of Cry toxin to
be isolated from GM plants. These assays represent inexpensive, easy and direct
measures of human toxicity.

In summary, we have demonstrated that GM plant Cry proteins are very dif-
ferent, both to naturally occurring Cry proteins and to surrogate Cry proteins.
Secondly, we have outlined a strong prima facie case that introduction of a natural
Cry protein into a plant can significantly enhance its toxicity towards both target
and nontarget species. Indeed, the intention of many of the changes made to natu-
ral Cry proteins is to heighten or broaden their toxicity (English et al., 2000). Even
quite subtle changes to Cry toxin composition, conformation and size have been
shown, by research over the 20 years since Bt crops were first commercialised, to
dramatically alter toxicity (Soberon et al., 2007; Vachon et al., 2012). In our view,
the regulatory system, by its continuing heavy reliance upon historical evidence
and surrogates, has failed to keep up, both with the commercial expansion of Cry
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toxin modifications and with scientific developments into the subtleties of Cry
toxicity and activity.

When they were first introduced it was widely expected that the introduction of
GM Bt crops would lead to reductions in insecticide use. This expectation is still
asserted by applicants today as balancing the risks of GM Bt crop introductions.
Evidence so far suggests, however, that reductions in the application of conven-
tional insecticides have been uneven and transient (eg Benbrook, 2012; Pemsl,
Waibel, & Gutierrez, 2005). What our review draws attention to, however, is that
measures of insecticide use, and also the claims for reduced insecticide use made
by applicants, have disregarded the Cry insecticides in GM crops themselves.
These toxins deserve much greater attention and may be of equal or greater con-
cern than conventional pesticides.
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